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Note 

TRIPIC: Triangular-Mesh Particle-in-Cell Code 

I. INTRODUCTION 

A particle-in-cell code using triangular meshes (TRIPIC code) is developed 
to simulate charged-particle motion in magnetostatic fields self-consistently. 
Triangular meshes are adequate to simulate in a computational region with 
curved boundaries. As an example, simulation results are presented for a light-ion 
beam (LIB) diode [l]. 

Up to now many particle simulations have been performed [2-S] to study a self- 
consistent interaction between charged particles and a field. In many codes usually 
rather regular space meshes are employed to describe the computational region. 
Recently we have a problem of, for example, a diode simulation for an intense 
particle beam. In this case the computational space region has nonuniform or 
curved boundaries. 

In order to simulate such a problem, we developed the triangular mesh particle- 
in-cell code (TRIPIC) which employs triangular space meshes. The TRIPIC code 
is magnetostatic and 2.5-dimensional. In the TRIPIC code the relativistic equation 
of motion is solved and the interaction between particles and space meshes is 
accomplished by a simple method. A subroutine of a magnetostatic-field solver is 
based on a method developed by Winslow [9] and which is used in SUPERFISH 
[lo] and TRIDIF [ 111 codes. 

II. CODE STRUCTURE 

In the grid generator we use Winslow’s method [9]. The coordinates at the 
boundaries of the computational model are set as the Dirichlet boundary condi- 
tions in the logical space. By using these conditions, the two Laplace equations are 
solved inversely by the successive over-relaxation (SOR) method in the logical- 
space meshes. 

The relativistic equation of motion is solved by the Buneman scheme in the 
particle pusher: 

dP/dt = q( E, + v x BP). (1) 

Here P is the momentum, t the time, q the charge of the particle, E, and B, the 
electric and magnetic fields on the particle, v the velocity of the particle. A particle 
moves across the triangular meshes. To find the triangular mesh in which the par- 
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title is located, we perform the following computation: first, t re com- 
posed of the particle position and any two vertixes of the m hen the 
particle is inside this triangular mesh, the sum of the above three triangle areas is 
equal to the mesh area. If the width of the time step is small enough, the 
moves to a neighboring mesh of the old one. In addition, meshes are num 
series. Therefore we can easily find a new position of the particle by searching a 
small number of the neighboring triangles, that is, at most 13 triangles. This is not 
time-consuming. 

In the magnetostatic-field solver the following equations are used. These equa- 
tions are solved by using the Coulomb gauge: 

div D = p, rot B = p, J, D=Eo& (2) 

where D is the elctric displacement, B the magnetic field, E the electric field, 
current density, p the electric charge density, cl0 the magnetic permeability, a 
the dielectric constant in the vacuum. We use Winslow’s method for discretiz 
Figure 1 presents a part of the triangular (primary) meshes and the definition of the 
secondary mesh which is composed of a vertex and two midpoints of side of a 
primary mesh and whose area is one third of the rimary one. Each vertex of a 
primary mesh is surrounded by six primary triangles. The control-volume method 

X(or r) 

"it1 

FIG. 1. The notations useful to the discretization of the field equations on the triangular mesh. The 
hatched region is the secondary mesh area. 
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is adapted to the dodecagon area consisted of six secondary meshes surrounding 
the vertex. Over the secondary mesh the generalized Poisson equation 

m/at = v . (mq + s, (3) 

is integrated, assuming that the gradients of the physical quantities are constant in 
each triangular primary mesh, where @ is the potential, t the time, A the coefficient, 
and s the source term. Gauss’ law is used for the first term on the right-hand side 
of Eq. (3). Finally we obtain the discretized form of the generalized Poisson 
equation on the triangular meshes: 

c W;(cDj-@)+G A, (4) 

wi= (‘i+ l/2 cot Oj+ 112 + Ai- l/2 Cot BiC l/2)/29 

A=Cai+lp, 

where W, is the weight determined by the form of the primary meshes, ai+ ,,2 the 
area of the secondary mesh. The lirst term at the right-hand side of Eq. (3) shows 
the sum of the fluxes. The angles of f3i+ 1,2 and oi- 1,2 are delined as shown in Fig. 1. 
In Fig. 1, Si is the side vector combined between the center vertex and the vertex 
with the number i of the primary mesh, S+ the vector rotated clockwise from Si by 
the angle 90”. 

The Dirichlet boundary condition is used for the static Poisson equation. For the 
magnetic-vector-potential equation the condition in which the perpendicular 
magnetic field becomes zero is imposed at the perfect conductor. In order to do so 
the magnetic vector potentials are resolved into the parallel and perpendicular com- 
ponents at the boundary surfaces. By using this decomposition, the coupled 
magnetic-vector-potential equations for the two components on the x (or Y) -z 
plane are solved. The direct Gauss forward-elimination and backward-substitution 
method is used in the matrix solver for the basic equations. 

To accomplish the interaction between the particles and the space meshes, we use 
a simple weighting method. Each particle has a finite radius and meshes, locating 
in this circle, interact with the particle. The virtual radius of the particle is the 
maximum distance between the neighboring two grids. The field !?p (= E or B) on 
a particle is obtained by the following (see Fig. 2): 

(5) 
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Particle ramus 

FE. 2. The interaction of the particle and the meshes for the case of N= 3. The particle has the 
finite radius. Yy, is the field (or the current or the charge densities) on the grid whose number is n: 15, 
the distance between the particle and the grid (number n) in the irregular triangular meshes. 

IIere Yn is the field on the grid point in the circle of the particle, L, is 
between the particle and the grid, n is the grid number, and N is the tot 
of the meshes interacting with the particle. In the weighting method, the weight is 
defined by the inverse of the distance between the particle and the mesh 
There is no difficulty in replacing l/Ln with another weight function. Then the 
magnetostatic fields are obtained at the particle locations. The new current and 

charge densities are assigned to the grid from the particle by using this ~de~t~ca~ 
weight. We checked the conservation of physical quantities and found them well 
conserved. 

In addition, the TRIPIC code has another subroutine for charged~~art~c~e 
generation. The particles are generated at the boundary surface to satisfy the space- 
charge limit condition. This optional subroutine is useful for simulating the electron 
and ion emission at the electrodes in an intense-ID diode [ 11, for exampk. 

III. EXAMPLE 

In this section an example of the particle simulation is presented for a barrel type 
of the GLIB diode. In this example the computational region is cyli~dr~c~ll~ and 
plane (z = 0) symmetric. The applied voltage is 5MV and constant in time. There 
is no applied magnetic field inside the gap. The generated triangular meshes for the 
computation are shown in Fig. 3. The diode gap d,_, is 0.8 cm, the height of the 
barrel 2. Rl = 12 cm and the cathode radius R,. = 6 & cm. 
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FIG. 3. The mesh structure, used in the simulation for a barrel type of a diode. The diode gap daek 
is 0.8 cm, the height of the barrel 2. Rl = 12 cm, the radius of the cathode Rc = 6 J’? cm. 

The computational results are shown in Fig. 4. The left-hand side of Fig. 4 shows 
the electron map and the right one is the proton map. In the curved region the 
behavior of the particles is simulated. Due to the self-magnetic field electrons 
preferentially drift to near the z = 0 plane. 

Time = 0.52188 [nsecl 

10.0 

6.0 
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2 [cm1 

FIG. 4. The electron and proton maps in a barrel type of a diode. The applied voltage is 5 MV. The 
computation employs both cylindrical symmetry and symmetry about the z=O plane. The total mesh 
nmber employed is 574, the total super-particle numbers for ion and electron 1424 and 1747 at this snap 
shot respectively, and the time steps for electron and ion dt, = 0.348 ps = (0.2 L,,Jc) and 21 x At,, 
respectively, where L,,,, is the minimum L, and c the light speed. A sub-cycle is used in a particle 
pusher. 
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IV. SUMMARY 

The triangular-mesh particle-in-cell (TRIPIC) code was developed to simulate 
the behavior of particles self-consistently in a curved region. The code has mangi 
applications. The example treated here for a diode with curved electrodes is a useful 
application. 
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